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Synopsis 
Calculations have been performed to  evaluate the relative effects of extensional and 

shearing flow fields on both the chain elongation and crystal nucleation rate enhancement 
for polyethylene crystallizing from xylene solutions. Rheological behavior was evalu- 
ated by means of the elastic dumbbell model modified for nonlinear effects at high 
elongations, and nucleation rate effects were considered from an essentially phenom- 
enological viewpoint. Molecular weight effects were also incorporated explicitly in 
the computations. Results show that chain elongation and nucleation rate enhancement 
is far greeter for extensional than for shearing flows. Semiquantitative comparisons 
with experimental results reported in the literature for various aspects of the flow- 
induced prOCe99, including the important fractionation effects, are discussed. Modi- 
fication of the dumbbell model to  account for shear rate effects on the intrinsic viscosity 
is also discussed. 

INTRODUCTION 
The problem of flow-induced crystallization of polymers from solution 

has been one of relatively high interest in recent years. Investigations 
reported to date have been almost exclusively experimental in nature, with 
the principal objectives being elucidation of the morphological features and 
physical properties of the shishkebab crystals and experimental document* 
tion of the fractionation effect (see references 1 and 2 for more detailed 
reviews). As a result of the fundamental observations on the fluid me- 
chanics of flow-induced crystallization made by Pennings and co-~orkers ,~.~ 
and borne out by later  investigation^,'*^^^^^ it seems a firmly established fact 
that regions of extensional flow are necessary for the nucleation of fibrous 
crystals from solution and that simple, laminar shearing flow does not in- 
duce fibrous nucleation in normal molecular weight systems. Very recent 
observations, however, indicate that fibrous growth can be enhanced by a 
laminar shearing flow field.' 

Kobayashi and Nagasawas have reported calculations to show the effects 
of chain elongation on crystal thickness, growth, and nucleation 
rates. Their computations, however, are reported in terms of the change 
in birefringence on orientation and as such do not give a direct measure of 
the flow parameters necessary to produce such orientation, nor do they 
explicitly show the important effects of molecular weight. Their results 
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are also based on a linear force extension model for the polymer chain net- 
work. Hlavacek and Seyere have also shown computations for the relative 
effects of shear and elongation rates on molecular extension; however, their 
computations are also based on a linear necklace model and they do not 
explicitely include molecular weight effects. Their computations also 
appear to neglect the Brownian motion force. 

The purpose of this presentation will be to elucidate in a more exact 
quantitative fashion, via the elastic dumbbell model, the effects of the 
fundamental fluid mechanical and molecular parameters (especially molec- 
ular weight) on the elongation of a polymer molecule in solution and also, 
through a basically phenomenological approach, to show how the fluid 
mechanics will affect the energetics of the nucleation process. The system 
chosen for computation will be polyethylene in xylene. 

THE ELASTIC DUMBBELL MODEL AND 
MOLECULAR EXTENSION 

Computations to  show the various fluid mechanical effects will be based 
on the well-known elastic dumbbell model modified according to  a method 
developed by Peterlin'O to account for nonlinear force-extension effects a t  
high elongations. The dumbbell model considers only the motion of the 
free ends, connected by an elastic force, with the hydrodynamic resistence 
concentrated in the dumbbell ends. The dumbbell model was chosen over 
the perhaps physically more realistic necklace model for its relative com- 
putational simplicity and since it does allow explicit inclusion of molecular 
weight effects in a relatively straightforward fashion. 

When the polymer molecule is immersed in a flowing medium, various 
forces act on it to alter the chain end separation and orientation. These 
forces are the frictional resistance between the molecule and surrounding 
medium in which it flows, an elastic retractive force which resists chain ex- 
tension, and a Brownian motion force. Thus to compute the mean square 
end-to-end separation of the chain ends, one needs to evaluate the diffusion 
equation for the distribution of lengths and orientations of the dumbbells. 
The distribution function C#J is given by lo 

?!!! at = - V -  [(v - F/{)c#J] + D V~C#J  

where F is the elastic force in the dumbbell, v is the velocity field between 
the two ends of the dumbbell, and { is the coefficient of frictional resistance 
between the beads and surrounding medium. The diffusivity D is given 
by the Fokker-Planck relation 

D = kT/{ (2) 

The elastic retractive force is given by an entropy forcelOsll 

F = - TVS(r) (3) 
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where r is the end-to-end separation. 
nents must be computed from Kuhn's expression12J3 

In general, the elastic force compo- 

kTu 
L 

F = -  (4) 

where L is the length of an equivalent statistical chain segment and u is 
given by the inverse Langevin function 

1 
coth u - - = T/NL 

U 

with N as the total number of statistical segments in the molecule. 
In  the limit of small extensions, eqs. (4) and (5) reduce to a linear force- 

separation relation, the evaluation of the diffusion equation for r$ becomes 
straightforward, and solutions for the mean square end-to-end distance 
have been worked out.10 As pointed out, however,lO these solutions pro- 
duce the unrealistic result that a t  certain critical conditions the mean 
square separation becomes infinite-a result of the breakdown of the linear 
force extension relation at  moderately high extensions. As eq. (5) predicts, 
the elastic force constant increases rapidly for moderate to large extensions. 
Peterlin'O has given a straightforward modification to account for this non- 
linear effect by assuming that the elastic force-extension relation can be 
written as 

F = 2 p  EkTr (64  

where 

U E =  

3 (A) 
and 

3 
p = 2 N 2 '  

By assuming that E is a function only of the final rather than instantaneous 
chain end separation, the diffusion equation remains linear and solutions in 
terms of the force constant E can be obtained by direct modification of the 
linear results.'O The force factor E thus becomes an implicit function of 
the solvent kinematics and is obtained from a combination of eqs. (5) and 
(6) where the chain end separation T is replaced by the root mean square 
end-to-end distance. 

For the evaluation of the elongation and nucleation rate effects, results 
will be compared for both a simple, steady extensional flow with solvent 
kinematics in rectangular Cartesian coordinates given by 
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where G, the stretch rate, is constant and e,, e,, e, are the Cartesian co- 
ordinate unit vectors, with the origin of the coordinate system as the center 
of mass of the dumbbell, and a simple shearing flow field where 

v = G (ye,, 0, 0)  (8) 

with G being the shear rate. Expressions for the mean square extension of 
the dumbbell are derived from 

(9) (T2) = (39) + (y2) + (22) 

where the brackets refer to the ensemble average obtained by integrating 
the appropriate quantity with the distribution function over the dumbbell 
space T (z, y, 2). Expressions for the extension have been worked outlo; 
and in terms of the extension ratio a and the nonlinear force factor E, these 
become 

I”’ - = [  ( E  - OG) 
( E  - 2OG)(E + OG) 

for extensional flow and 

for shearing flow. The chain extension a is just 

a = [El1’% 
with (r02)‘/’ the r.m.s. distance for the macromolecule a t  rest. In these ex- 
pressions, the parameter 0, the relaxation time, is equal to12 T(ro2)/6 kT and 
can be directly related to molecular weight through the intrinsic viscosity. 
For the dumbbell model, the intrinsic viscosity a t  zero shear, [ q ] ~ ,  is given 
by lo 

R TO 
h l o  = - ?OM 

where R is the gas constant, qo is the solvent viscosity, and M is the macro- 
molecule molecular weight. Combining eq. (13) with the Mark-Houwink 
equation,I3 

h l o  = KM” (14) 
gives e directly as a function of molecular weight: 

voKM’+a 
RT e =  

NUCLEATION RATE EFFECTS 

In order to compare the effects of the two flow fields, eqs. (7) and (8), on 
the nucleation rate of fibrous crystals from solution, a purely phenomeno- 
logical approach can be taken. If one assumes that nucleation is controlled 
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by interfacial processes and is not influenced by the transport of molecules 
to the nucleation site (an assumption for which there appears to be some 
experimental justification'), then the energetics of nucleation turn out to be 
essentially the same as for quiescent growth with a modification necessary 
only for the free energy terms. 

The nucleation rate expression for the formation of primary nuclei with 
folds having a rectangular cross section due to Lauritzen and HoffmanI4 is 

- AF,* - 32 u,~u, 
I0 = - no [ 7 1  [ kT(Af)2 ] 

h 

where I0 is the nucleation rate, us and u, are the fold- and side-surface free 
energies, respectively, h is Planck's constant, no is the number of molecules 
per unit volume, AF,* is the free energy associated with the activated jump 
process at the interface, and Af is the free energy change per unit volume 
for the formation of an infinite crystal from a random coil in solution. 
The preexponential term, KO, comes from the modification of the Turnbull- 
Fisher nucleation theory and contains terms in u,, us, Af, and a, the molec- 
ular cross section.'4 Consistent with the assumption that transport pro- 
cesses to the nucleation interface are being neglected, it seems reasonable to 
assume that the rate expressions developed by Floryl5 and modified by 
MandelkernlG for the nucleation of a bundle-like nucleus can be applied to 
the formation of the fibrous structures in the Aow-induced process. Thus, 
one can assume that molecules are crystallizing from a solution state in 
which they are already partially extended as a result of the fluid mechanical 
forces. We thus have for the nucleation rate of fibrous entities with similar 
cross section as the folded chain crystal 

where the preexponential term Kb differs somewhat from KO in that it con- 
tains terms in v,, ue', and the free energy Af'. The u,' refers to the end- 
surface free energy for the bundle-like nucleus, a term which in general will 
differ from a,; v 2  is the volume fraction of polymer and Af' is the mentioned 
free energy difference between an infinite fiber crystal and an extended or 
partially extended chain in solution. 

To evaluate Af' in terms of known quantities, we can consider the process 
of fibrous crystallization at  constant temperature as follows : 

) -'f' , (infinite fiber) 
extended chain crystal 

where the usual assumption is made that Af is the same for fibrous and 
folded chain crystals" and is related to the free energy of crystallization 
from the melt, AfO, by" 

(18) 
RT 
v1 

Af = Afo - - [ V l  - (1 - V 2 l 2  X I  
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where V1 is the solvent molar volume, v1 is the volume fraction of solvent, 
and x is the solvent-polymer interaction parameter which can also vary 
with molecular weight.ll 

From the diagram, then, we expect 

A Y  = Af + Afi. (19) 

To compute the relative effects of folded chain and fibrous nucleation in 
a flowing field, we take the ratio of eq. (17) to eq. (16) : 

1 6 ~ ~ 2  In v2 

In eq. (20)) the differences in KO and Kbu, and u,' and the AF,* terms 
have been omitted since as computations will show once a critical elonga- 
tion is achieved, the nucleation ratio increases catastrophically, with the 
changes being controlled completely by the very large values of Af1 which 
result. This makes the result insensitive to even order-of-magnitude 
differences in the aforementioned quantities. The change Af1 is evaluated 
from the thermodynamic expression for the change in free energy F of an 
elastic body acted on by a net tensile force fez causing an extension dL'I: 

dF = VdP - SdT + f&L. (21) 

The evaluation of fez for both extensional and shearing flows is discussed in 
the Appendix, where it is shown that a t  constant T and pressure, 

where rZ2- rUu, the first normal stress difference acting along the principle 
stretch axes, is the net force extending the molecule, and c is polymer con- 
centration in mass units. The first normal stress difference is evaluated 
from'% 

with the (z2) and (y2) terms evaluated from the previously mentioned non- 
linear modification of the diffusion equation. For a stretching flow field, 
eq. (7)) r22-ruv lies along the direction of motion, i.e., the polymer z-axis, 
while for a shearing flow the principal axis of deformation is rotated through 
an angle @with the direction of flow where1* 

with T , , ~  being the shear stress. 
mal stress difference along the principal axes isl8 

Thus, for the shearing flow, the first nor- 

(722 - 7yy)p = (T22 - TUU) cos 28. (25) 
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Thus, for the nonlinear dumbbell in an extensional field, 

3RTcEGO 
M ( E  - 2GO)(E + GO) (7zz - Tuy) = 

while for a shearing flow field, 

(7zz  - .uu), 

wherelo 

- - (g>' [cos 281-1 

GO 
cot 2g = -. 

E 

COMPUTATIONS 

Calculations were carried out for a 0.2 wt-% polyethylene solution in 
xylene at  temperatures of 95", loo", and 105°C for a wide range of stretch 
and shear rates. Molecular weight effects were incorporated explicitly in 
the terms for the interaction parameter x, the relaxation time 8, and the 
number of statistically equivalent random links. 

For x ,  the following expression was usedlB: 

x = 0.372 - 25.23M'.5. (29) 

For the intrinsic viscosity parameters in eq. (15), the following expression 
for polyethylene fractions in xylene at 105°C was usedz0: 

[7,~] = 1.65X10-' M0.83. (30) 

For the N and L terms needed in eq. (5) ,  the following expression for the 
mean square end-to-end distance of a polyethylene molecule in a theta 
solventz2 was used : 

(ro2) = 6.7nP (31) 
with n and 1 being the number and length, respectively, of CH2 repeat 
units in the chain. From eq. (31), using the standard technique," the 
statistically equivalent terms were obtained. In eq. (18), the standard ex- 
pression for A p  was used": 

AfO = Aho (1 - T/Tmo) (32) 

with Tmo being the equilibrium melting temperature and Aho the enthalpy 
of crystallization of an infinite crystal from the melt. Numerical constants 
for the parameters in this expression and the remaining constants needed 
were taken as followsz': 

Aho = 2.8OX1OB erg/cm3, Tmo = 145"C, a = 20 Az, 
u, = 70 ergs/cm2, u, = 10 ergs/cm2. 
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STRETCH RATE (rec-') 

Fig. 1. Per cent extension va. stretch rate for various molecular weights at 100OC. 
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SHEAR RATE (S0c-I) 

Fig. 2. Per cent extension va. shear rate for various molecular weights at 100OC. 

Figures 1 and 2 show the results for per cent extension (i.e., ratio of 
chain extension to contour length of completely extended molecule) as a 
function of solvent stretch or shear rate for various molecular weights. The 
calculations for per cent extension were essentially insensitive to tempera- 
ture for the range chosen and so are shown for 100°C. These results show 
the dramatic effects of molecular weight on the critical stretch or shear rate 
needed for reasonable molecular extensions and clearly show the greater 
efficiency for elongation (i.e., more catastrophic stretch rate dependence) of 
extensional kinematics as opposed to shearing flow. 

Figure 1 shows that for polyethylene of molecular weight much above 
5X106, fairly modest stretch rates can produce large extensions; and, in 
fact, for molecular weights above 5 x lo', stretch rates even less than 1 in- 
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inverse second can induce near-complete molecular extension. In con- 
trast, the results seen in Figure 2 show the much less dramatic changes in 
extension possible with a shearing flow field. Where for the extensional 
flow chains with molecular weights of 5 X lo6 and above can readily elongate 
for reasonable stretch rates, for shearing flow, minimal shear rates on the 
order of 106 sec-' are needed; and, in addition, increases in extension for 
increased shear are much less dramatic. Even for a molecular weight of 
108, shear rates on the order of lo3 sec-l are seen to be necessary to achieve 
moderate extensions. 

Table I shows the nucleation rate ratios for the various conditions. The 
values listed for the nucleation rate ratio are the first values at which the 
rates dramatically increase from values very much less than unity. Several 
observations are clear: First, a t  a given temperature and molecular weight, 
the critical stretch rate for catastrophic increases in the ratio is nearly two 
full orders of magnitude smaller than the corresponding critical shear rate 
needed; and, second, the corresponding ratios and hence elongations at  the 
critical ratio are larger and occur over a much narrower range for the ex- 
tensional kinematics. Also, the rate ratio increases with increasing crys- 
tallization temperature. The absolute values of the nucleation rate of 
course decrease with increasing temperature (and dramatically at these 
high temperatures). However, as the increased ratio demonstrates, fibrous 
nucleation becomes even more favorable over folded chain nucleation at  
the higher temperatures; and, in fact, one can readily explain the reduction 
in supercooling observed in agitated solutions on this basis. 

The clear indication of these results is that extensional flow kinematics 
are far more conducive to fibrous nucleation from solution than shearing 
flow; and, in addition, the enhancement of chain elongation and nucleation 
rates is far more sensitive to molecular weight for the extensional flow. 

DISCUSSION 

Two points are worthy of discussion regarding the elongations possible in 
shearing flow with the elastic dumbbell model, the inclusion of which, as it 
turns out, would further decrease chain extension. The first is the so- 
called internal viscosity effect,'O which has to do with the fact that in a 
shearing flow field, the polymer coil rotates as well as deforms and for each 
full rotation is twice compressed and twice extended. Accounting for the 
dynamic resistance of the molecule to the resulting changes in conformation 
brings about a further decrease in extension possible at a given shear rate.1° 

Additionally, the dumbbell model does not predict an explicit depen- 
dence of intrinsic viscosity on shear rate for low shear rates. The shear 
rate dependence of [s], in fact, only shows implicitly through the nonlinear 
force factor E and its dependence on shear rate, an effect which is essen- 
tially negligible for moderate rates. 

A recent modification of the elastic dumbbell equations, proposed by 
Gordon and SchowalterZ3 and discussed in detail elsewhere,*'.* can, in fact, 
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account explicitly for the shear rate dependence seen in many sy~tems.~' 
The essential implication of the modification shows in the prediction for 
intrinsic viscosity (at moderate shear rates where linear force extension can 
be assumed) where2' 

where [ 7 ] 0  is the zero shear intrinsic viscosity and B, a term involving the 
phenomenological parameter e, is 

4 2  - e) 

(1 - e)2 
B = -  (34) 

with e having values between 0 and 1. As it turns out, using this approach 
would not affect the extensional flow computations since in applying the 
modified dumbbell results to the extensional kinematics, one merely finds 
the parameter 8, shown previously, replaced by the quantity e(l - e); and 
since by assumptionz6 

TOKM'+O 
RT(1 - €) 

e =  (35) 

the computations remain unchanged. For shearing flow, the results are, 
however, noticeably different. Carrying through Peterlin's nonlinear a p  
proach to the modified dumbbell theory, one finds for the extension ratio a 
and first normal stress difference, respectively, 

3E[E' + e(2 - e)82G2] 
3E2 + [2 + e(2 - 

and 

(36b) 
R T c [  2(1 - €)82G2 ] 

Tzz  - TYy = - 
M E2 + e(2 - e)bG2 

where clearly, for the special case E = 0, the above equations reduce to the 
standard elastic dumbbell results. 

Intrinsic viscosity-shear rate date reported for polyethylene solutions 
in tetralin26 were compared to eq. (33) and are shown in Figure 3. Evalua- 
tion of [ q ]  was not completely straightforward since the specific viscosity- 
to-concentration ratio did not linearly extrapolate to zero concentration.26 
Nonetheless, allowing even for reasonable errors; one sees that the shear rate 
dependence can be adequately fit by the model. Using the data from 
reference 26 along with estimates for the molecular weight, computed from 
an expression for intrinsic viscosity in tetralin,Z0 values for the parameter e 
were obtained and fit to molecular weight via the suggested power law de- 
pendence.2' Using the modified eqs. (36a) and (36b) yielded results for 
chain extension and nucleation rates which, for all but the very highest 
molecular weight, were at least an order of magnitude under the critical 
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GL (secm2 x lo-') 

Fig. 3. Intrinsic viscosity ratio vs. square of shear rate. Data points evaluated from 
ref. 26. 

shear rates in Table I1 for the simple elastic dumbbell model. Thus, one 
can conclude with some assurance that, for the elastic dumbbell model, 
shearing flows are clearly far less effective than elongational flows in initiat- 
ing fibrous crystallization from solution. 

Further relative enhancement of the effectiveness of extensional flows in 
this mode of crystallization arises from the realization that extensional 
kinematics are far more effective than shearing flows in orienting and bring- 
ing together the extended chains,aoJ1 an effect which has not been con- 
sidered in these calculations. 

These results, although subject to limitations regarding precise numerical 
values as a result of extrapolation of eq. (30) beyond the region of its a p  
plicability, offer quantitative support to the observations of Pennings and 
coworkers regarding fractionation effects and the minimum molecular 
weights needed for fibrous growth from stirred s o l ~ t i o n s . ~ J ~ ~ ~ ~ ~ ~ ~  In one 
set of experiments, a minimum molecular weight of 5x10' wm needed for 
fibrous growth from vigorously agitated solutions.27 Purely laminar shear- 
ing flow was also shown to be incapable of inducing fibrous nucleation in a 5 
wt-yo Marlex solution.3 Both results are clearly in line with the computa- 
tions presented here. In  the former case, as Figure 2 shows, even for molec- 
ular weights as high as lo6, chain extensions necessary for catastrophic 
growth of the nucleation rate are only possible for shear rates greater than 
lo6 sec-l. Further, for the 5% Marlex solution stirred at  250 ~ e c - ' , ~  even 
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considering that a sizable fraction of material above lo8 molecular weight 
might be present, Figure 2 indicates only minimal extension; and hence 
essentially zero nucleation rate enhancement would occur. 

Figure 1 also lends support to  the far greater efficiency observed for 
fractionation from flow fields with an extensional component. Experi- 
mental results have also been reported showing the nucleation capabilities 
of modest stretch rates (i.e., 5 to  15 sec-l) on an unfractionated Fortiflex 
polyethylene2 which are also consistent with the results shown here. 

As has been pointed out,2 many questions regarding the precise role of the 
fluid kinematics in the growth steps and resultant morphology of poly- 
ethylene shishkebobs remain. These computations again, however, do lend 
support t o  interpretations concerning the high molecular weight, acid- 
resistant, essentially structureless fibers reported from stirred solutions and 
seen in melting and gel permeation chromatographic behavior.32 

The basis for the energetics calculations is, of course, the assumption of 
completely isolated chains in solution. Although computations were 
carried out for a 0.2 wt-% solution, only the free energy expression of eq. 
(18) and the In v2 term in the nucleation rate expression, eq. (20), turn out 
to  have explicit concentration dependence. The catastrophic behavior 
seen in the nucleation ratio turned out to be independent of the In vz term in 
that omitting it completely produced only a relatively minor increase in the 
ratio a t  the critical stretch or shear rate. The dumbbell model, strictly 
speaking from a molecular basis, ought only to  be applied to  solutions 
dilute enough that chain entanglements and network formation would not 
occur. One might expect some entanglement formation for 0.2% poly- 
ethylene solutions, particularly for the very high molecular weight fractions 
(ie., greater than loe), although without complete rheological data there is 
no sure way to  estimate this effect." Regardless of this fact, however, one 
finds that the ability of expressions based on dilute solution theory for 
predicting rheological behavior of polymeric solutions, even for more con- 
centrated systems, is often quite g ~ o d . ~ ' , ~ ~  Exact quantitative details may 
vary from model to  model for more concentrated solutions; however, the 
general behavior regarding catastrophic nucleation rate effects ought t o  be 
the same regardless of the model. A careful analysis13' in fact, shows that 
constitutive equations based on the linear dumbbell and network models 
have precisely the same form. Both models result in two-constant equa- 
tions; for the dumbbell model, these are polymer concentration and the 
relaxation time 8; while for the network model, the constants are for the 
numbers of and rate of loss of network segments, and both parameters 
need to  be determined empirically." 

The elastic dumbbell model presents the obvious advantage of a single 
parameter which is readily estimated from dilute solution behavior. Thus, 
one should expect the basic approach taken in these calculations to  be 
equally useful in predicting the general effectiveness of extensional and 
shearing flow kinematics on fibrous nucleation fairly independently of solu- 
tion concentration. However, in light of the observation concerning 
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growth in a purely shearing flow field, it is felt that a simple phenomenologi- 
cal approach of the type presented here would be inappropriate for explain- 
ing growth enhancement. In the case of growth, it would appear that per- 
haps computations based on mechanical entanglement arguments, similar 
to those proposed elsewhere, may be more appr0priate.2~ 

Appendix 

Development of Free Energy-Extension Relation 
There does not appear to be a well-defined justification in the literature for the ex- 

pression presented in eq. (22) for the free energy-extension relation. A similar expres- 
sion is given in reference 9 on an apparently ad hoc basis. The purpose here will be to 
present what is believed to be a rigorous development based on a continuum approach. 

I n  
order to compute the net force causing extension of the polymer molecule, we can con- 
sider the extension of a cylinder of fluid within the main body of flow consisting of both 
polymer and solvent. If one then assumes that during the stretching process the 
dumbbell ends follow the main flow up to the point of their maximum steady state 
extension, then the development to be presented parallels closely in several details with a 
previously given derivation for the extension of a viscoelastic cylinder." Transforming 
the kinematics of eq. (7) to the more natural cylindrical coordinates (7, e, 2) with 2 88 

the direction of extension, 

Consider first the case for the steady extensional kinematics given by eq. (7). 

v = G(-;, 0, z). 

The net force needed to extend the cylinder is then a a 9 a 4  

r R ( t )  

where T, is the total stress acting on the moving end of the cylinder of radius R(t).  
T., is related to the deviatoric stress T~ by*' 

Tu = - p  + ru (A.3) 

where p is the isotropic pressure. The problem thus becomes evaluation of eq. (A.3) for 
this case where the forces on the cylinder sides are non-zero. 

The deviatoric stress tensor components for the solution remain diagonal and thus 
the Cauchy equations of motion for the solution reduce toaa 

7w dv, a p  1 a pu, - = -- + -- (r~,.,) - - 
at r bt ar r 

(A.4a) 

(A.4b) 

with p the solution density and for the deviatoric stress terms by symmetry roe = rW. 
Substituting the kinematics from eq. (A.l) into eqs. (A.4) and integrating by invoking 
the standard compatability arguments, one finds that the isotropic pressure can be 
written a s 3 1  

(A.5) P = Pd + P O  

where PO is the so-called static pressure evaluated at r = z = 0 and pd is a so-called 
dynamic pressure88 where 
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By analogy to  the development given for the extension of a cylinder under atmospheric 
conditions," we can take for the total stress acting in the radial direction" 

T r r l r - ~ ( r )  = - p d .  (A.7) 
Combining with 

gives 
Tw = -P TW (A.8) 

PO = Tw. (A.9) 

Substitution into (A.3) along with the kinematics gives 

(A.lO) 

Since we are only interested in the forces necessary to overcome the viscous resistance 
to  flow represented by the beads and solvent, we shall neglect the first term which is 
essentially a kinetic energy arising from the fluid kinematics. We thus have for eq. 
(A.2) 

F' = rR'( t ) (~ , ,  - T,,). (A.l l )  

From eq. (21) at constant T and P, the total free energy change for the cylinder 
extended from an initial length Lo to  some final steady state length L is 

aF = SL: F'dz. 

The continuity equation for the cylinder gives*a 

Ro'Lo = R*(t)Z(t) 

which, on substitution with (A . l l )  into (A.12), gives 

AF = ~ R O ~ L O  s,' (TI' - 
with the extension ratio a as 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

The relative contributions of the solvent and beads to the deviatoric stress tensor are 
assumed to  be additive*; and since only the contribution of the beads is desired in the 
free energy of extension, the stress terms in (A.14) can be taken as the stress due only 
to  the beads, as given in the text of this paper. Finally, dividing by the volume and 
concentration gives the desired free energy change per unit mass of polymer as 

(A.16) 

where the first normal stress difference has been transformed to the original Cartesian 
system. For the equivalent expression in shearing flow, one need only assume that the 
same computation is valid for the extension occurring along the principal stress directions 
where the stress tensor is again diagonal. The relation between the principal stresses 
and the stresses in Cartesian 2, y, z space are given in eqs. (27) and (28). 
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